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Abstract-A numerical simulation is undertaken in order to study the effect of anisotropy of the effective 
thermal conductivity tensor on heat transport in the porous medium Rayleigh-Btnard problem. The 
momentum equation includes an inertial drag (Forchheimer) term. The effective thermal conductivity 
tensor, in the energy equation, contains an isotropic stagnant component and a hydrodynamic dispersive 
component with principal axes aligned with the local velocity vector and with magnitude proportional to 
the local velocity amplitude. A parametric study of two-dimensional steady cellular convection reveals the 
following. (1) Dispersion increases the net heat transfer after a Rayleigh number N 10@200. As the degree 
of anisotropy of the effective thermal conductivity is increased, the wall averaged Nusselt number is 
decreased. (2) Using the available Rayleigh numberrwavenumber variation data does not affect the 

divergence between simulation and experiment. 

1. INTRODUCTION 

THE STUDY of buoyancy driven convection in fluid- 

saturated porous media is motivated by applications 
in such diverse areas of technology as oil and ground- 
water resource management, control of the spread 
of underground pollutants, porous insulation, and 
binary alloy solidification, cf. Georgiadis [l]. Such 
physical systems can be prohibitively complex since 
they involve multicomponent convection, chemical 
reaction, and complicated pore structure. It is desir- 
able to first focus on a uniform system, simple enough 
to allow analysis with reasonable effort, yet retain 
enough physics so that valuable insight can be gained. 
The problem we consider here is single-component 
natural convection in a layer of infinite horizontal 
extent, bounded by impermeable upper and lower 
walls and filled with a fluid-saturated porous medium. 
When heated from below, a spontaneous initiation of 
cellular fluid motion is observed. This is essentially the 
analogue of the classical Rayleigh-Benard convection 

(RBC) in pure fluid. Adopting the suggestion of Nield 
and Bejan [2], we will refer to the problem under 
consideration as Horton-Rogers-Lapwood convec- 
tion, HRLC for short. 

Despite many thorough theoretical studies, see for 
example Joseph [3] and Nield and Bejan [2], the 
HRLC problem is not as well characterized as its 
counterpart in pure fluid. One particularly persistent 

problem is the reported uncertainty as to the correct 
governing equations for buoyancy driven convection 
in porous media. This is manifested by the fact that 
there is a large-scale discrepancy between Nusselt 
number measurements and predictions based on the 
Darcian model. Employment of nonlinear non-Dar- 
cian models in HRLC was first reported in the ana- 
lytical work of Neischloss and Dagan [4], and the 
numerical studies of Kvernvold and Tyvand [5], and 
Georgiadis and Catton [6, 71. The first two articles 
employ an anisotropic quadratic dispersion model, 
the third examines the effect of the Forchheimer 
(quadratic) drag term, while the forth includes the 
effect of both the Forchheimer term and an isotropic 
linear hydrodynamic dispersion term. Kvernvold and 
Tyvand [5] reported that the effect of the dispersive 
enhancement of conductivity (which is characterized 
by the dispersion factor (d/L)‘(k,/kr), where d/L 
expresses the coarseness of the packed bed) is to 
increase the Nusselt number. Georgiadis and Catton 
[6] found that the Nusselt number decreases as the 
parameter w = (bL)/(yPr) increases. Finally, Geor- 
giadis and Catton [7] found that the inclusion of the 
dispersion term explains certain anomalous heat 
transfer data reported in the literature. On the basis of 
the isotropic dispersion model, it was also concluded 
that, unless the Prandtl number is 0.01 or less, dis- 
persion dominates the quadratic drag and increases 
the Nusselt number. 
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thermal diffusivity of the medium, F;,,, 
(pc)r i [m’s ‘1 
Fourier coefficients of the velocity 
amplitude. equation (21) 
inertial resistance coefficient, 
t.75~((150(1-4))’ [m] 
Fourier coefhcicnts of nonlinear terms 
involving velocity amplitude, 
equation (22) 
specific heat [J kg -’ K ‘] 
Fourier coefficients of nonlinear terms 
involving velocity amplitude, 
cq~ation (24) 
longitudinal dispersion coefficient, 
equation (&a) 
transverse dispersion coe~~ient, 
equation (7a) 
bead diameter [m] 
ratio of longitudinal dispersive to 
stagnant porous medium conductivity. 
equation (6b) 
ratio of transverse dispersive to stagnant 
porous medium conductivity, 
equation (7b) 
d~spersivity tensor, equation (3) 
Darcy number, ;‘L ’ 
gravitational acceleration in the 
r-direction [m s _ ‘] 
lol~&itudinaI effective thermal 
conductivity, equation (6b) 

[Wm ‘K ‘1 
stagnant thermal conductivity of porous 
medium [W m -’ K-‘1 
transverse effective thermal conductivity, 
equation (7b) [W m-’ K-‘1 
number of Fourier modes in the 
_r-direction 
Kozcny-Cam-man inertial coefficient, 
yfhL) .- ’ 
characteristic macroscopic length, 
thickness of layer [m] 
Nusselt number, equation (5) 
average prcssurc of the interstitial fluid 
Prandtl number of the medium, ~~u,~ 
Darcy (sup&i&L) velocity, (r’t )v’)‘*’ 

Rayleigh number, ~~~A~~~~~~u,~) 
porous Rayleigh number, 
.~~A~~~~~~],.~~) / 

time [s] 
temperature difference. Tn - r,- [K] 
horizontal. vlcrtical velocity component, 
respectively 
horizontal, vertical Cartesian coordinate, 
respectively. 

Creek symbols 

; 

~~vcnum~er, 27cj. ’ 
volumetric thermal expansion of the fluid 

IK- ‘1 
2’ permeability of the porous medium, 

~~‘~~(150~~ -4)‘)’ [m’] 
A &--I+ 
ii, 6,, = 1 if i =,j, 6, = 0 if i#,j 
n. waveIength of basic convection rolls 
V kinematic viscosity [m’ s ‘1 

P fluid density [kg m-“1 

d, porosity 
UI inertial drag coefficient, hL(yPr,))‘. 

Subscripts 
C cold 
f fluid 
H hot 
k kth order 
m porous medium 
t ~on~itlldinal 
T transverse. 

Special symbols 
D z-derivative 

Q( ) order of magnitude 
DF Darcy-Forchheimer model, 

D, = D, = 0 
DFI Darcy-Forchheimer isotropic model, 

Dr. = Dr 
DFA3 Darcy-Forchheimer anisotropic model, 

D,iD, = 3 
DFA4 Darcy-~orchhcimer anisotropic model, 

&/& = 4 
R&Z critical value. 

The above numerical investigations 15-71 have data was offered by Georgiadis and Catton f6], the 
somewhat decreased the disagreement between pre- same article points out another deficiency in our 
dictions and measurements of the plu vs Ru, relation- understanding of the HRLC problem : the lack of flow 
ship. Agreement (within experimental error) was pattern visualization data which denies closure to the 
achieved in certain subsets of available experimental wavenumber selection problem. We would like to 
data. For example, Kvernvold and Tyvand [S] com- point out that the theoretical models in refs. [5-‘7] 
pare only with water-glass data, and Georgiadis and involve 2-D periodic flow in layers of infinite hori- 
Catton f7] confine their study to the slightly super- zontal extent, while experiments take place in boxes 
critical range 60 < Ra,, < 150. AJthough an expla- of various shapes and aspect ratios which produce 
nation for the large-scale divergence of the Nu vs Ra,, convection with wave patterns infiuenced by initial 
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conditions or wall effects. Moreover, the presence of 
the porous medium does not allow direct flow visu- 

alization. Detailed information about convective pat- 
terns, which accelerated the understanding of the Ray- 
leigh-Benard problem. is unavailable in the HRLC 
problem. In spite of the above deficiencies, numerical 
studies of various HRLC models in simple domains 
are extremely useful in helping to establish correct 
governing equations for natural convection. They can 
help test different constitutive laws for flow through 
porous media: the correct law will ultimately elim- 
inate inconsistencies between theory and experiment. 
A major part of our uncertainty concerning such laws 
is related to the definition of ‘effective’ thermophysical 
properties such as the thermal conductivity. The 
effective thermal conductivity is traditionally rep- 

resented by the conductivity of the stagnant fluid- 
saturated porous medium augmented by a dispersive 
component which is caused by the motion of the inter- 

stitial fluid. Numerical studies have demonstrated that 
the effect of dispersion on the HRLC problem and its 
variations is significant when the porous layer is 
coarse (L/d is of order IO or less), see also He and 
Georgiadis [8]. The isotropic conductivity model 
adopted by Georgiadis and Catton [7] seems to gen- 

erally overpredict the Nusselt number. We therefore 
seek to explore an anisotropic version of that model, 
as suggested by Georgiadis and Catton [6]. 

In this article, we study the effect of anisotropic 
dispersion on heat transfer in the presence of inertia 
(Forchheimer) drag. The Darcy-Forchheimer-Bous- 
sinesq formulation of the momentum equation, along 
with slip boundary conditions, is coupled to a single 
energy equation which contains the full anisotropic 
tensor of effective thermal conductivity. While valid 
theoretical models exist for the longitudinal com- 
ponent of the conductivity tensor, the magnitude of 
the transverse component is a point of contention. We 
use ratios of longitudinal to transverse dispersivities 
of 3.0 and 4.0, since Saffman [9] proposed (and 
Kvernvold and Tyvand [5] used) a value of 40/ 15. We 
also evaluate the dispersivity values proposed by Hsu 
and Cheng [IO]. 

The layout of this paper is as follows. In Section 
2, the system of equations governing porous natural 
convection with anisotropic dispersive thermal con- 
ductivity is presented. The parameters which charac- 
terize the system are defined, followed by a discussion 
of boundary conditions. A brief description of the 
numerical scheme is also included. A discussion of 
the numerical results and comparison with available 
experimental data is given in Section 3. Conclusions 
are presented in Section 4. 

2. THE MATHEMATICAL MODEL 

HRLC, as its pure fluid counterpart RBC, is for- 
mally defined as natural convection in differentially 
heated horizontal layers of infinite lateral extent. A 

number of simplifying assumptions are made in order 
to make HRLC solvable. 

1. The porous media, as exemplified by packed 
beds sandwitched between impermeable isothermal 
plates, are assumed to be homogeneous and isotropic. 
This means that we cannot discriminate between 
different packings and aspect ratios (ratio of hori- 
zontal and vertical dimensions) of reported exper- 
iments. Indeed, many researchers fail to report 
detailed structural data for the packed beds they use. 

2. Available theoretical [2. 3, 71 and recent exper- 
imental work [I I] on HRLC indicate that, under cer- 
tain conditions (including assumption l), there is a 
sharp transition (bifurcation) from the motionless 

conduction state to a steady two-dimensional con- 
vection when a non-dimensional number, Ra,, attains 
the critical value 47r’. This state is stable and consists 
of pairs of counter-rotating straight rolls with period 
7,. Without loss of generality, we can then consider the 
plane normal to the rolls, see Fig. I. Unless otherwise 
indicated, we will set i, = 2L, which corresponds to 
the critical wavelength at the onset of convection. 

2.1. System of equations 

Because the equations governing heat transport and 

fluid flow for porous media have been developed in 
an empirical manner, the equations will not be derived 
here. We adopt the incompressible Darcy-Forch- 
heimer-Boussinesq formulation of the momentum 
equation and the dispersive energy equation. This is 
the same system of equations used by Georgiadis and 
Catton [7] for their study of isotropic dispersive ther- 
mal conductivity. The present work uses an aniso- 
tropic dispersivity tensor (discussed in Section 2.4) in 
the energy equation as proposed by Georgiadis and 
Catton [6]. The governing equations, in non-dimen- 
sional form, are 

v*q = 0, (1) 

1 % 
-= -VP+RaTe,-&q--/q/g, (2) cjPr,, at 

(PC),, c?T 
~~ - = -q*VT+V*[(l+D*)VT]. 
(PC), zt 

(3) 

The scales used in the non-dimensionalization of (1)) 

(3) are length -L, velocity w a,,&‘, pressure 
- pva,L ‘, and temperature - AT. 

FIG. 1. Isolated convection cell. 
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2.2. Boundary condirions 2.4. The dispersivity tensor 
The temperature in equations (2) and (3) is scaled 

between zero and one. The temperature boundary 
condition is unity at the lower horizontal boundary 
and zero at the upper horizontal boundary of Fig. 1. 

Symmetry considerations imply that the two lateral 
boundaries are adiabatic since only straight rolls are 
considered. 

The im~nctrabiiity condition employed here 
requires that the normal component of velocity be 
zero at the solid walls : 

q*ri=o atz=O,I (4) 

where n is directed into the porous later. The tan- 

gential component of velocity does not vanish at the 
wall. Although the no slip condition holds on indi- 
vidual pore walls, the spatial averages over many 
pores (needed to define the Darcy velocity q) produce 
non-zero velocity at the porous medium-solid wall 
interface. 

Let us consider the two-dimensional Row over an 
array of cylinders shown in Fig. 2 which is quali- 
tatively similar the flow through packed beds. Fluid 
particles, traveling along separate paths will be pushed 
apart, and thus dispersed by the solid obstructions. 
This is the physical reasoning behind the concept of 
transverse hydrodynamic dispersion. In a similar 
manner, longitudinal hydrodynamic dispersion may 
be thought of as arising due to the fact that the cyl- 
inders accelerate fluid packets in adjacent streamlines. 
The microscopic velocity fields contain regions of slow 

flow (e.g. boundary layers, cf. Taylor [13]), in which 
the particles slow down or get trapped, and regions 
of faster (than the mean) flow which accelerate the 
particles. 

The phenomenon of thermal hydrodynamic dis- 
persion with solid phase participation is more com- 
plicated since hydrodynamic dispersion in the fluid is 
coupled to conduction in the solid. Although the net 
effect is macroscopically manifested as diffusion 
(hence the definition of an ‘effective’ transport 

coefficient D* in equation (3)). the diffusivity can be 
evaluated only if the microscopic field is known, This 
is essentially a closure problem. Measurements of the 
D* components are made indirectly by matching with 
macroscopic transport ~neasurements. An additional 
complication arises since all measurements of the 
longitudinal component are made with transient 
experiments while the transverse component is tra- 
ditionally obtained at steady-state. Georgiadis and 
Catton [6] solved a stochastic transport equation 
based on a priori statistics of the interstitial field in 
porous media to derive the energy equation (3). The 
anisotropic dispersivity tensor D* on the right side of 
(3) accounts for the enhancement of heat transport 
due to hydrodynamic dispersion. The longitudinal 
k: and transverse kr components of D* correspond 
to the directions along and normal to the local (Darcy) 
velocity, respectively. Georgiadis and Catton [6] 
derived the expression for the longitudinal transport 
coefficient 

2.3. T~lerrnapil~~~i~al parameters 

The structure of the porous medium is char- 
acterized by the pore size (or bead diameter) d, the 
layer thickness L, and the local porosity (or void 
fraction) #. On the basis of assumption (I), we adopt 
Ergun’s [ 121 empirical formulas for the perm~dbiljty, 
y, and inertial resistance coefficient, h, both defined in 
the Nomenclature. The thermal properties of the fluid- 
saturated matrix are expressed by the stagnant ther- 
mal conductivity of the medium, k,, (average con- 
ductivity when the filtration velocity is zero), and the 
thermal capacity of the fluid (pr),. We can then define 
the dimensionless thermophysical parameters of the 
porous medium o, Pr,,,, and Ra (see Nomenclature). 
Finally, with the introduction of the Darcy number 
(which is essentially a coarseness factor) Da, the 
porous Rayleigh number is defined as Ru, = RaDa. 

Ra,, is the bifurcation parameter of the system of 
equations (l)-(3) and accounts for the presence of 
two length scales: a macroscopic scale, L, the layer 
thickness, and through a microscopic scale, d, the pore 
or bead diameter (y - 6). 

The net dimensionless heat transfer across the 
cavity, defined as the ratio of the total convective heat 
flux to its value in the absence of convection, is given 
by the wall averaged Nusselt number at the bottom 

wall (or by the spatial average on any horizontal 
plane), 

Note the presence of the amplitude of the local vel- 
ocity at the wall. This is a consequence of the velocity 
dependent enhancement of the effective thermal con- 
ductivity owing to dispersion, as described in the fol- 
lowing subsection. Because the local velocity is aver- 
aged over many pores, there is a slip velocity at the 
porous medium-solid wall interface, see equation (4). 

kf=k,,, 
i 

@a) 

Fto. 2. Hydrodynamic dispersion due to flow through 
stationary solid matrix. 
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As mentioned earlier, the ratio d/L is a measure of 
the coarseness of the packed bed. In an analogous 

manner, the expression for the transverse transport 
coefficient is 

k: = k, 
i 

I+ (74 

Georgiadis and Catton [7] found the value of 
CL = 0.36 to give good agreement with the exper- 
iments by Levee and Carbonell[14]. For a medium of 
layer height L, bead diameter d, and uniform porosity 
4, equations (6a) and (7a) can be also written 

and 

(6b) 

k+ = k,(l +D,lql). (7b) 

Experiments have shown that D, is greater than DT. 
In the present work, we use the values 

CL 
- = 3 = 3.0and4.0 

CT D, 
(8) 

which are close to the ratio 40/15 used by Saffman [9] 
and Kvernvold and Tyvand [5]. Hsu and Cheng [lo] 
proposed a similar expression for transverse dis- 
persion valid at high Reynolds numbers. When com- 
pared to equation (7a), their expression is equivalent 
to ours if we take C.r = 0.18/4 and CL = 0.18 for the 
Darcy-Forchheimer anisotropic mode1 with 
C,/C, = 4.0. 

By definition, the local velocity vector is aligned 
with the principal axis of the D* tensor. Referring to 
the Cartesian system of Fig. 1, where y, = u and 
q? = w arc the local velocity components, and to equa- 
tions (6b) and (7b), the components of the con- 
ductivity tensor can be expressed as 

where 6,, is the Kronecker delta. 
The two terms DL and DT of equations (6b) and 

(7b), respectively, are the constants of proportionality 
which account for the enhancement of effective ther- 
mal conductivity when flow is present. Further, since 
191 is positive, kt and ki: are always greater than or 
equal to k,, if the velocity is non-zero. 

We now return to the Nusselt number given by 
expression (5). We see that dispersion can increase the 
net heat transfer, compared to the D, = D, = 0 case, 
provided the term D,lql makes a comparatively small 
change in the temperature gradient at the bottom wall. 
This is indeed the case and this point will be discussed 
in more detail in Section 3.2. Since the impenetrable, 
stress free-boundary condition only allows parallel 
Aow at the wall, D, does not enter the expression for 
NU. 

2.5. Steady state conoection : method qfsolufion 
By letting q = ue, +t~e,, considering the steady 

state, and using (9), the system of governing equations 
(l)-(3) becomes 

(10) 

where A = D,.- D,. 
We seek a velocity field which satisfies the solen- 

oidal condition, equation (IO), and has zero normal 
velocity at the horizontal boundaries. Additionally, a 
temperature field is needed which satisfies the tem- 
perature boundary condition discussed in Section 2.2. 
Referring to Fig. 1, the velocity, temperature, and 
pressure are assumed to be spatially periodic in y with 
period 1. Since we are considering straight rolls, the 
solution (u, w, P, T) is projected onto a finite dimen- 
sional Fourier space (dimension K+ 1) as follows : 

~(y,z) = J(2) i Q(Z) sin (a,~), (14) 
k=I 

T(y,z) = 7’,(z)+,/(2) i 7’~(z)cos(ccn_r), (16) 
k=i 

P(Y,Z) 2 PO(z)+&) i: P&)cos(LY~y), (17) 
I=, 

where we use the discrete wavenumber spectrum 
{cln) =k.ccfork= 1,2,3...K. 

The boundary conditions are defined in terms of 
equations (14)-( 16) as 

w,(O) = &V,(l) = 0, 

T,(O) = 1, T,(l) = 0, 

7’,(O) = T,(I) = 0. (18) 

The spectral space in y is spanned by the following 
orthogonal basis functions : 

and the weighted inner product is defined as follows : 



1086 L. E. HOWLE and J. G. GEOKCXAUIS 

(20) -a,ADCzr - P;2i TL =,f: (26) 

Owing to the existence of nonlinear terms in the left 
hand side of the governing equations (1 I)-( 13). a 
pseudo-spectral scheme is presumed to be the most 
efficient numerical approach. Following Georgiadis 
and Catton [7], the terms containing 191 are rep- 
resented by appropriate Fourier series expansions as 
follows : 

191 = J(cZ + M’?) ” J(2)&,(:) 

with 

for k = l,2,. . K. In equations (25)--(27), the 

notation D( ) denotes the z-derivative d( )/dz. 
The functionals f:, f’l. and ,r’\ in (26) and (27) are 

the projections of the nonlinear terms of (21)-(24) 
onto mode k : 

J(W “(--1 -&(=)I 

+& i [A,(-)-B,(=)lcos(a,y), (23) 
.r‘l = J(2) A,,tr, + $ ,<;: , .;;, ~~~,,A,,Jdkn>m), 

I- I 

yi 5 J(2)Li,C,(z)sin(z,i). 
(29) 

(24) 
/‘: = (1~~ -(&DAL +ADB, +Acc,C,)) DT,, 

These expansions preserve the spatial symmetries of 
the Fourier expansions (14)-( 17). 

-(&AA +AB,)D’T,, 

2.6. Weak,formulrtion of the Galerkin ODES 

We begin by substituting the expansions (I 4)-( 17) 
-(D,A,,+AA,,-AdB,,)?,, 

and (21)-(24) into the system (IO)-( 13). Next we form 
the inner product (20) between the orthogonal basis +ADC,,+ “a:” 

I 
cr,T,,+2AC,a,,DT,, 

I 
I,(m,n,k) 

(19) and equations (IO)-( 13). Equation (10) yields 
I’~ = d,c,/dz which helps eliminate r1 throughout the 
system. The pressure gradient is also eliminated by 

h 

cross-differentiating equations (1 I) and (12), cf. ref. 
+m’ 1 i j(D,A,,+AA,,-AB,,)a~,T,,, 

J2 ,N = I ,/= I 
[7]. We then obtain the so-called weak form of the 
governing equations : 

(I +J(2)D,A,,+J~2)AB,,)D’To 

+J(~)(DTDA,,+ADB,)DT” 

+AC,,a,,)lDT,,,)IL(k,n. m) (30) 

where m, n # k. The terms I,(k, n, m) and IZ(k, n, m) in 
(28)-(30) represent the definite integrals 

i-l 

+D(Aa,CkT,)) 

and 

1 +,/‘(2)(D,A,+A&)+ ’ 44 A zi 
J2 

+ABzr) J2(DTDA,+ADB,) 

(25) 
I,(k,n,m) = z 

s 

il,x 

sin (qy) sin (a,,~) cos (a,,,v) dll 
0 

I, m = /k-n1 

= -I, m=k+n (31) 

0, otherwise 

and 

+~l~(n,DA:,+ADBz*+r?~AC*i- Wxk) 
J2 

DT, 

-{(1+,/2D,A,,+AA,-ABJa? 
cos (sky) cos (a,,y) cos (a,,,),) d> 

m = (k-n1 or m = k+n 

otherwise. 
(32) 
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0 Elder [lt] 

2 Schneider [17j 

-Day model 

FIG. 3. Experimental heat transfer in fluid-saturated porous 
media. 

2.1. Linearization 

The system of 2K-t 1 ordinary differential equations 
(2.5)(27) (with coefficients defined by (28)-(30)) is 
linearized and diagonalized with respect to the modal 

unknowns To, Tk, and 11’~ (k = 1,2,. . K) and their 

derivatives. This is accomplished by moving the terms 

containing T, in the right hand side of (30) to the left 
hand side of (26) and by moving the terms containing 

M?~ in (27) (by virtue of (28), (29)) to the left hand side 
of (27). The r-derivatives, which consist of terms D’T, 
and DT,, on the left hand side of (25), D’TL and DT, 
on the left hand side of (26), and D’trj, in the left 
hand side of (27) are approximated by second order, 
centered finite differences on a grid of N uniformly 
spaced nodes. With this procedure, the 2K+ 1 ordi- 
nary differential equations are totally modally decom- 
posed and an iterative scheme analogous to the block 

GausssSiedel method is obtained. For each mode k, 

a tridiagonal system of equations is solved and the 
new values used to update the next mode k + 1. After 
each iteration, the nonlinear terms containing ]q/ are 
updated by transforming them from the physical 
space to the spectral space by discrete Fourier trans- 
formation. The iterations are terminated when the 
pointwise error criterion 

maxl.A,.max,,r,,{l~~;-~~;~ ‘I, 

IT;-T; ‘I} <E (33) 

is satisfied. In equation (33), (i) denotes the modal 

Table I Input data and experimental references for the cases analyzed 

Case 

I 
Water-glass 
L/d = 21.9 

2 
Water-glass 

L/d = 7 

3 
Water-steel 
L/d = 8.13 

4 
Water-steel 
L,‘d = 13.1 

5 
100 es oilkglass 

L/d = 20.8 

6 
Mercuryylead 

L/d = 26.3 

Thermophysical 
parameters 

Ra,, = 50 425 
Da = 1.16x IO ’ 

Pr, = 4.00 
KC= 1.73x IO-’ 

lp = 0.375 

Ru,,, = 5&400 
Da = 2.08 x IO-’ 

Pr, = 4.50 
KC = 8.70 x IO_’ 

l#J = 0.394 

Ra, = 5&400 
Da = 1.56 x IO-’ 

Pr, = 0.92 
KC = 7.50 x IO_ ? 

lp = 0.393 

Ru,, = 5&400 
Da = 6.04 x IO -’ 

Pr,,, = 0.73 
KC = 4. I6 x IO-’ 

q~ = 0.388 

Ra, = 60-400 
Da = 2.03 x IO me 

Pr, = 15.7 
KC = 2.93 x 10 ~’ 

$4 = 0.395 

Ru, = 50-712 
Da = 1.49 x IO-’ 

Pr, = 0.018 
KC = 2.32 x 10 ’ 

c/J = 0.395 

Numerical Experimental 
parameters reference 

E=lo h 
N= 100 

K-6 

E = IO_” 
N= 100 

K=6 

c = 10 m6 
N= 100 

K=6 

E = 10mh 
N= 100 

K=6 

8 = lomh 
N= 100 

K=6 

E = lo-” 
N= 100 

K=6 

Prasad and 
Kladias [27] 

Jonsson and 
Catton [26] 

Jonsson and 
Catton [26] 

Prasad and 
Kladias [27] 

Jonsson and 
Catton [26] 

Jonsson and 
Catton [26] 
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10 

9 

a 
I 

Y 6 
= 5 

4 
3 
2 

64 ___ DFI 

Case 1: water-glass 
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FIG. 4. Comparison between experimen~l and numerical heat transfer. All cases assume a = T[ with 
the following notation : DFA4(3). Marcy-Forchheimer an&tropic model (&jr>, = 4(3)). DFI, Darcy- 
Forchheimer isotropic model (I),. = Or). DF, Darcy--Forchheimer isotropic model (DL = I.I, = 0). 
(a) Case 1, water-glass, experimental Ray{’ = 44. (b) Case 2, water- glass. experimental Ra:,“’ = 52. 
(c) Case 3, water-steel, experimental R&z’ = 77. (d) Case 4, water-steel. experimental Ro’,“’ = 75. 

(e) Case 5, oil-glass, experimental Rat’ = 5 I (I”) Case 6, mercury- lead, experimental Ray;’ r= 3 19. 

unknown at the ilh iteration and F: is the prescribed 3. NUMERICAL RESULTS AND DISCUSSION 
error tolerance. A fast pseudospectral scheme is 

obtained. The mean computation time for each value In order to demonstrate that the numerical method 

of Ra,,, is approximately three minutes on the converges, three separate tests are preformed. Con- 

SGI Personal Iris workstation (model 4D25) with vergence tests of the grid function on the z-grid, New- 

the 25 MHz MIPS R3000A CPU processor (double ton,-Kantorovich iterations and the truncated Fourier 

precision, K = 6 Fourier modes, N = 100 r-nodes, series all give satisfactory results, cf. Howle [ 1 S] 
E = IO-h). Experimental studies involving fluid-saturated 

Table 2. Numerical values of heat transfer for case I. cx = K 
~_ 

Wall averaged Nusselt number, Nu 
___ _.__.~ 

Aniso. Aniso. Iso. For&. 

&I, DJD, = 4 D,/D, = 3 &_ = L)., D, = DT = 0 Exper. 
_..~.. _~~ ~ __~ .~__.. .-_ 

58 1.67 I.68 1.74 1.72 1.5 
12s 3.07 3.13 3.57 3.02 
164 3.61 3.70 4.40 3.47 3.4 
229 4.31 4.47 5.63 4.00 4.0 
300 4.88 5.13 6.87 - 

350 7.69 - 
~ _____ -_ ..~ .~.. _~. ..~_. .~ 
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porous media are sparse compared with those of pure 
fluid. Investigations in porous natural convection 

were performed by Wooding [ 161, Schneider [I 71, 

Elder [18], Katto and Masuoka [19], Combarnous 
[20], Kaneko et al. [21], Yen [22], Combarnous and 
Bories [23], and Buretta and Berman [24]. More recent 
works are by Prasad et al. [25], Jonsson and Catton 
[26], Prasad and Kladias [27], and Lister [28]. As seen 
in Fig. 3 there exists a large amount of scatter in the 
data. The four triangular data points. labeled ‘low 

Pr,‘, in the figure represent an experiment by Jons- 
son and Catton [26] involving mercury-saturated beds 
of lead spheres. 

We use the experimental works of Jonsson and 
Catton [26] and Prasad and Kladias [27] for com- 
parison of prediction with experiment. In Table I, 
the thermophysical parameters of the experiments are 
shown alongside the numerical parameters used for 
numerical simulation. 

3.1. Heat tran@r 

We choose, for definiteness, four different fluid- 
solid combinations. In addition to the ubiquitous 
water-glass system data, the intent is to also include 
data from fluiddsohd combinations which do not give 
good agreement with simulation so that the limi- 
tations of the various heat transfer models may be 
explored. In total, six different fluiddsolid matrix sys- 
tems are examined. 

We include natural convection data for the water- 
glass system from two independent experimental 
investigations. Figures 4(a) and (b) show the cxper- 
imental data of Prasad and Kladias [27] and Jonsson 
and Catton [26], respectively, along with the results 
of the present simulation (continuous curves). These 
data are intentionally chosen with widely different L/d 

(layer height to particle diameter) ratios. Case 1 has 
a L/d ratio of 27.9 while case 2 has a L/d ratio of 7. 
We note that the simulation of case 2, which has the 
fewest bead layers of all cases considered, exhibits 
higher Nu numbers for all models. The error bound 
in the NM measurements is the respective authors’ 
estimate, namely 6”/0 for Prasad and Kladias and 13% 
for Jonsson and Catton. Refer to the Nomenclature 
for the notation. All of the simulations shown in Fig. 
4 are preformed with the value C, = 0.36, cf. Geor- 
giadis and Catton [7]. 

In this figure, the Nu data have been plotted against 
the re-normalized variable Ra,/Ra’,“‘. While we take 
Ra’,’ = 4~’ for th e numerical simulations, it varies in 
the experimental results between cases 1-6 (cor- 
responding to Fig. 4(a)-(f)), as a result of system 
imperfections and uncertainty in the thermophysical 
properties. To derive the experimental ‘critical’ Ray- 
leigh numbers, Ra:‘, from the experimental data, we 
use the expression developed by Lage et al. [29] : 

Nu-1 _ ~ = [C,(pr?)~“+C;“‘]~ !‘??I 
Ra 

(34) 

-~ 1 
RaZ’L 

for the critical Rayleigh number, Ra’,“‘, at the onset 
of porous natural convection. Lage et al. [29] define 

C, and C? as 

and 

C, = 172&-“5’h (35) 

CZ = 0.295 Da-’ ‘?I. 

Additionally they give the values of m ; 

(36) 

rn = 0.39 for Da = IO l, 

m = 0.40 for Da = 10m4, 

m = 0.41 for Da = 10m6. (37) 

The critical porous Rayleigh numbers of the exper- 
imental data shown in Fig. 4, as computed by equation 
(34), are listed in the Figure caption. Although these 
critical values differ, we observe that the agreement 
between simulation and experiment has been greatly 
improved when the Ra, is scaled with an appropriate 
critical value (obtained from extrapolation). In order 
to amplify this point, we also compile the same results 
in direct Nu-Ra, form in Tables 227. A comparison 
between experiment and theory reveals large differ- 
ences even close to the onset. Of course, one source 
of errors comes from property uncertainty. The other 
is generated by spatial wavenumber uncertainty. 
Although our numerical simulations generally agree 
with the predictions of linear stability analysis (this 
will become apparent shortly), the experimental con- 
ditions define a problem slightly different than the 
canonical HRLC problem (i.e. infinite horizontal 
layer). All experiments have been preformed in boxes 
of finite aspect ratio, which essentially limits the range 
of wavepatterns to those which conform to the box 
geometry. Following linear stability analysis it can be 
shown that the variation of the wavenumber away 
from the theoretical critical for HRLC (z = n) has a 
second order effect on NM when the reduced 
Ram/RaL,’ is used. This result, in conjunction with the 
divergence ofthe Nu-Ra, results ofTables 2-7, motiv- 
ated the re-scaling of Ra,. 

We now return to the comparison between the 

different models. At slightly supercritical Ra, 

numbers, the DF model gives the highest Nu. Then at 
some medium Ra,,, (in the range 100&150) the DF and 
DFA curves cross. This was observed by Kvernvold 
and Tyvand [5] and Georgiadis and Catton [7]. The 
predictions according to all models except the DFI 
model are within the error bounds in Fig. 4(a) (high 
L/d) while these models overpredict the experiments 

in Fig. 4(b) (low L/d) for Ra,/Ra’,“’ greater than 2.5. 
The next system to be studied is water-saturated 

bed of steel spheres. This is a system in which the 
agreement between theory and experiment is poor, for 
both cases in Tables 4 and 5. All models overpredict 
the Nusselt number, although it should be noted that 
this deviation is smaller in the case corresponding to 
the Jonsson and Catton [26] data. We attribute this 
to the fact that Jonsson and Catton used measured 
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R%, 

50 
95 

III 
135 
200 
300 

RU,, 

50 
113 
1 x0 
205 
295 
350 

Table 3. Numerical values of heat transfer for case 2. IZ = n 

Wall averaged Nusselt number, Nu 

Aniso. Aniso. iso. Forth. 
D,;D,==4 D,;D,= 3 D, = DT D,=D,=O Exper. 

.~ 

I .29 1.30 1.35 I .45 
2.41 2.55 3.02 2.55 I .9 
2.81 2.93 3.59 2.81 2.2 
3.28 3.46 4.42 3.13 2.3 
4.41 4.15 6.61 3.18 
5.93 6.54 9.86 

Table 4. Numericat values of heat transfer for case 3. c( = rt 

Wall averaged Nusselt number. Nu 

Aniso. Aniso. Iso. Forth. 
D,jD,=4 D,iD, = 3 DL= D, D,_=D,=O Exper. 

1.30 1.31 1.35 I .43 
2.81 2.92 3.56 2.79 1.5 
3.93 4.18 5.63 3.54 2.1 
4.2X 4.59 6.35 3.74 3.0 
5.46 5.95 X.85 3.6 
6.10 6.71 10.3 

Table 5. Numerical values of heat transfer for case 4. a = z 
_ 

Wall averaged Nusselt number. Nu 

R%I 

50 
100 
143 
232 
2X2 
350 

Amso. Aniso. Iso. Forth. 
D,,;D, = 4 D,l'D,= 3 D,= D, D, = D-, =0 Exper. 

1.34 1.35 1.39 I .43 
2.59 2.66 3.09 2.60 
3.32 3.45 4.31 3.18 2.12 
4.47 4.74 6.55 3.94 2.63 
5.00 5.35 1.11 2.79 
5.64 6.1 I 9.20 

Table 6. Numericat values of heat transfer for case 5. c( = K 

Wall averaged Nusselt number, Nu 

Ru,,, 

60 
III 
164 
198 
250 
325 

Aniso. Aniso. Iso. Forth. 
D,iD,=4 DJD,= 3 D, = D, D,= D,=O Exper. 

1.71 1.72 1.81 1.78 
2.X6 2.92 3.37 2.x2 2.7 
3.66 3.7X 4.69 3.48 3.6 
4.08 4.25 5.47 3.79 4.2 
4.64 4.88 6.60 
5.25 5.66 X.16 

values of the stagnant conductivity for the packed 
beds. The estimation of the effective conductivity in 
this system is not easy, given the high conductivity 
ratio of steel to water, 0( 100). In fact, measurements 
of the effective thermal conductivity of water-steel 
systems found in the literature vary over a range of 
30%, cf. He and Georgiadis [8]. 

The solid-fluid combination which gives the best 
agreement between measurement and simulation in 

the Nu-Ru, results is oil-saturated glass beads (case 
5). Jonsson and Catton [26] reported the data given 
in Table 5, and shown in NeRu,/Ra:," form in Fig. 
4(e). The DF, DFA4, and DFA3 models agree with 
measurements within the experimental error. The best 
agreement over the Ra,, range of the experimental 
data, as also indicated in Table 5, is given with the 
DFA4 model. 

The last set to be analyzed, case 6, involves mercury- 



Natural convection in porous media 1091 

Table 7. Numerical values of heat transfer for case 6. c( = z 

Wall averaged Nusselt number, Nu 

Aniso. Aniso. 

R&I D,/D,=4 DJD, = 3 

50 1.21 I.21 
250 3.32 3.38 
494 4.30 4.44 
532 4.41 4.56 
61X 4.64 4.81 
712 4.85 5.06 

saturated beds of lead spheres. This experiment was 
also performed by Jonsson and Catton [26]. These 
data are included because other low Prandtl number 

(fr, = 0.0 18) experiments are extremely scarce. It is 
useful to note that, if the analogy with the pure fluid 
Rayleigh-Bknard problem holds, it is possible that 
these data points correspond to another convection 
regime (e.g. unsteady) in which case comparison with 
our computations is meaningless, cf. Georgiadis [30]. 

As Table 7 and Fig. 4(f) show, all of the theoretical 

models used grossly overpredict the heat transfer. In 
fact, the data extrapolate to a primary bifurcation at 
a value unrealistically higher than R&J’ = 47r’. This 
anomaly warrants further experimental investigation. 
However, because of the toxic nature of the saturating 
fluid, further experiments involving mercury are 
unlikely. A possible alternative is liquid helium. 

3.2. Efltict of’dispersion 
As“shown in Fig. 4, the value of the dispersion 

coefficients D,_ and D, has significant impact on the 
heat transfer. The definitions of these two coefficients 
are given by equations (6b) and (7b). All numerical 
results reported to this point employ the value 
C, = 0.36 suggested by Georgiadis and Catton [7]. In 
the present work, we define C, = C,/4 for the DFA4 
‘model, and C, = C,,/3 for the DFA3 model. Note that 
for the DF model, C’,_ = C., = 0, and for the DFI 
model D, = DL. But for the DFA3 and DFA4 models, 
we have DT < D,. From the above and equation (5), 
we conclude that the net heat transfer of the DFA 
model will be generally less than that of the DFI model 
(provided (6a) is used for both cases). In facact, the DFI 

model is an approximate upper bound for the DFA 
model. This point is made graphically in Fig. 4 and 5. 
Figure 5 shows temperature surfaces in?‘-3 space (case 
I, x = rc, Ku, = 200) for the DFA4 model (solid lines) 
and the DFI model (dashed lines). Also shown in Fig. 
5 are the isotherms for both models, projected onto 
the plane (r,y/A). The slope of the DFI surface at the 
z = 0 and z = I boundaries is greater, on average, 
than the slope of the DFA4 model. According to 
equation (5), the DFI model will have a higher Nusselt 
number than the DFA4 model since the temperature 
gradient is higher. This is confirmed in Fig. 4(a). 

One final point concerning dispersion deserves to 
be made. Hsu and Cheng [lo] proposed an expression 

ISO. Forth. 
D,=D, D, =D,=O Exper. 

~~~ 

1.23 I .23 
3.90 3.21 - 

5.46 1.5 
5.66 I.8 
6.07 2.0 
6.48 2.3 

for transverse dispersion valid at high Reynolds num- 
bers. When compared to equation (7a), their 
expression is equivalent to ours if we take C7 = 0. I8/4 
and C, = 0.18 for the DFA4 model. Fig. 6 shows a 
comparison of heat transfer between the DFA4 model 
using C, = 0.36 and C, = 0.18. It is clear from Fig. 6 
that CL_ = 0.18 gives a better fit to experimental data 
than C, = 0.36 using the DFA4 model. 

3.3. Rayleah number-wacenumber space 
Recent experiments in HRLC reveal a variety of 

stable convective wavepatterns near onset, cf. Howle 
et al. [I I]. These experiments, which constitute the 
first (to our knowledge) direct shadowgraphic visu- 
alization of convection in large aspect ratio porous 
enclosures, indicate that 2-D rolls are the exception 
rather than the rule in HRLC. It is worth mentioning 
that, in analogy to the RBC problem, 2-D rolls appear 
in thin slab-like porous boxes since they are stabilized 
at the boundaries, as the recent experimental inves- 
tigation of Lein and Tankin [3l] showed. Regarding 

the laterally unbounded layer, we have to also note 
that no experiment has contradicted the theoretical 
prediction of Straus’, as revised by Kvernvold and 
Tyvand [5], that once 2-D rolls uppear they are stable 
to infinitesimal disturbances inside a balloon with an 

apex (at RaL,‘, LY = x). 
All of the heat transfer results reported in the pre- 

vious section assume z = 71 while Ra, is changed. 
Rather than present Nu-sc curves with Ra, held con- 
stant. it is more instructive to show the Nu surface 

in Ra,,-a space, as in Figure 7. This simulation is 
conducted for case I using the DFA4 model with 

C, = 0.36. Note that the wave number in Fig. 7 has 
been normalized with n. In the course of numerical 
simulation we observe that the numerical scheme con- 
verges for large wavenumbers all the way to the con- 
duction regime delineated by the neutral curve. For 
small wavenumbers, another phenomenon is observed 
for the anisotropic dispersive scheme. Depending on 
the Ra, number. there are wavenumbers which lead 
to a ‘numerical bifurcation’. This is manifested by an 
increase in the number of original rolls as the numeri- 
cal iterations proceed. Although these solutions need 
further careful investigation, their appearance might 
imply that the two-dimensional steady convection 
regime becomes unstable. We would like to mention 
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FIG. 5. Temperature surfaces and contours in y-r space for the DFA4 model (solid lines) and the DFI 
model (dashed lines). Case 1. r = =, Rrc, = 200. 

in passing that this domain above the neutral curve is 
occupied by the sinusoidal instability regime (which 
is a three-dimensional convection regime), according 
to Joseph’s [3] Darcy model. 

Lister [28] found the wavenumber of three-dimen- 
sional convection cells to be a function of Rayleigh 
number. It should be noted that the observation of 
three-dimensional cells is not consistent with our 
model consisting of two-dimensional rolls, as depicted 
in Fig. I. However, lacking better data, we adapt the 
measured curve to the two-dimensional case. Lister 
gives the equation 

n = I7 + 0.024 I&z,,, (38) 

for the number of hexagonal convection cells. We 
will use his slope but change the intercept. The new 

equation, 

17 = 24.05 + 0.024 Ru,,, (39) 

gives a hexagonal cell which is two layer depths across 
the flats (cP = n) when Ra:’ = 47~‘. The area, A, of 
the convection cell in terms of the area, AL, of Listers’ 
experimental apparatus is 

A,!? =.-A,.__ 
n 24.05 +0.024 Ra,, 

(40) 

where we use (39) rather than (38) for the number of 
cells. Next, the width of a hexagon (distance across 
the flats) 

W = I .0746JA 

is scaled with the height, L, to give 

W 
;. zz ~ 

L 

Then, the area of Listers’ experimental apparatus is 
substituted into (40), the result substituted into (41), 
and this substituted into (42) to yield, after some 
manipulation, the wavelength as a function of Ra, : 

5.0 
,_-’ 

4.5 : ,_,’ 

4.0 ,,,..~~~s” 

,’ 
3.5 

i Il 

,,’ 
,’ 

:: 3.0 

1.0’ ‘,,I ” ’ “I” I 
50 100 150 200 250 300 

Ra 
m 

FIG. 6. Comparison of heat transfer using the values 
C,_ = 0.18 from Hsu and Cheng [IO] and C, = 0.36 from 

Georgiadis and Catton [7]. Case 1. c( = x, DFA4 model. 
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FIG. 7. The Nusselt number surface in Ram-a space. Case 1, DFA4 model, CL = 0.36. The thick line 
corresponds to c+z = I. 

1(Ra,)=(24x10-2+24x10'-sRa,) I:'. (43) 

Finally, we have the wavenumber as a function of Ra,: 

Figure 8 compares the Nusselt number obtained by 
using equation (44) with the Nusselt number by using 
CI = n. In both computations, the DFA4 model with 
C, = 0.36 is used. Although the wavenumber varies 
by 10% over the range of the Rayleigh number 
studied, the effect on Nusselt number is small. We 
note in closing that Lein and Tankin [31] reported 
that the wavenumber did not vary with Ra, in slab- 
like porous boxes. 

5.0 1.120 
,_>’ 

,’ 

7 
4.0 ,-f* ,’ ! : 

I’ 
3.5 

$J 3.0 
~ --_I::-. f 1.090 

1.075 

1.060 5 

1.045 

/ 1.030 

1 
1.015 

FIG. 8. Comparison between heat transfer using r = n and 
equation (44). Case 1, DFA4 model, C, = 0.36. 

4. CONCLUSIONS AND FUTURE NEEDS 

A parametric numerical exploration of steady, two- 
dimensional cellular convection in packed beds using 
a dispersive non-Darcy model with anisotropic con- 
ductivity revealed the following. 

1. The inclusion of a hydrodynamic dispersion 
term brings an increase of the net heat transfer rate, 
as expressed by the Nusseh number, after a Rayleigh 
number value in the range 100-200. After this range, 
the Nusselt numbers corresponding to the anisotropic 
dispersive model lie between the isotropic values and 
those of the pure Forchheimer model (absence of 
dispersion). As the degree of anisotropy of the effec- 
tive thermal conductivity is increased, the wall-aver- 
aged Nusselt number is decreased. This is consistent 
with the fact that this Nusselt number depends on 
the transverse dispersion component since the wall is 
isothermal and the normal velocity is zero, see equa- 
tion (5). 

2. With the exception of oil-glass systems, all 

models tend to overpredict the NM-Ra,, data found in 
the literature. Better agreement is obtained as the 
n~agnitude of the longitudinal dispersion coethcient is 
decreased from CI, = 0.36 to 0.18, as suggested by 
Hsu and Cheng [lo]. The worst cases are water-satu- 
rated steel spheres and mercury-saturated lead packed 
beds. For the water-steel system, this is probably 
caused by the Iarge variation in the stagnant thermal 
conductivity estimates in such systems (where the con- 
ductivity difference between the two phases is large). 

3. In general, the Nusseh number depends strongly 
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on the wavenumber. Unfortunately available wave- 
number measurements are sparse and do not pertain 
to two-dimensional convection. Our best estimates of 
wavenumbcr variation with Rrr,,. obtained from the 
experimental results of Lister [28], do not alleviate the 
divergence between simulation and experiment. 

4. The large scale divergence of the experimental 
Nu-RN,,, results, as exemplified by Fig. 3. is greatly 

reduced when we plot Nu vs Ra,,,!RaK’. This resealing 
effectively climinatcs all the thcrmophysical propertics 
of the particular system except for the stagnant effec- 
tive thermal conductivity used in the definition of 
Nu. It is obvious that attention has to be paid to 

determining these cocfhcients, such as the thermal 
conductivity from direct experiments. Existing ref- 
erences of experimental investigation do not report 
error bars of the thermophysical and structural par- 
ameters used to reduce the data. At the same time. a 
more systematic investigation of the porous Rayleigh- 
Benard problems needs to bc undertaken. Finally, 
progress in the area of pattern visualization of con- 
vection in packed beds is needed before further simul- 
ation is attempted. WC will report in the future on 
progress towards this goal. 
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